INTRODUCTION TO MOTOR SIZING

Nick Repanich
Adjunct Research Professor
Department of Mechanical and Mechatronic Engineering and Sustainable Manufacturing
California State University, Chico
Chico, CA 95929-0789
(530) 520-2548

SEVEN STEPS OF SIZING AND SELECTION

Step 1: Develop the torque and inertia equations that model the system mechanics.
1a: Draw/diagram the system to establish the relative location of the load mechanics.
1b: Develop the acceleration $\left(T_{a}=\right)$, friction $\left(T_{f}=\right.$), gravity $\left(T_{g}=\right)$, and thrust $\left(T_{t h}=\right)$ torque equations. Since $T_{a}=(J)(\alpha)$, this will also involve developing the inertial model ($J_{\text {load }}=$).

Step 2: Determine the load motion profile(s) and calculate peak values.

- First find the max velocity reached (V) in a triangular move. If OK, use it. $\quad V=\frac{2 X}{t_{m}}=\frac{2 x_{a}}{t_{a}}$
- a simple triangular profile minimizes torque (lowers cost), but uses higher speeds
- If V is too high for any reason, then find the optimized acceleration time $\left(t_{a}\right)$ in a trapezoidal move using overall move time, distance $\&$ the new constrained velocity. $\quad t_{a}=t_{m}-\frac{X}{V}$
- trapezoidal profiles are useful where rated motor torque drops with speed
- for steppers, set maximum speed where the motor changes from the constant torque range into the constant power range, otherwise reduction may be necessary.
- If there are multiple move profiles, find the worst-case acceleration (a), where $\quad a=\frac{V}{t_{a}}$

Step 3: Calculate the mass moment of inertias of the load mechanics.

- Anything that moves with the motor is part of the inertia (J).

Step 4: Determine the peak torque (T_{p}) at maximum speed excluding motor inertia.

- determine worst case combination of $T_{a}, T_{f}, T_{g}, T_{\text {th }} \quad\left(T_{\text {peak }}=T_{a} \pm T_{f} \pm T_{g} \pm T_{t h}\right)$
- calculate power required to move the load (to find a system in the right power range)

Step 5: Choose an approximate motor/drive system.

- find a motor/drive with more than the required speed and about double the power
- look at speed-torque curves and price list simultaneously
- with servos, use most of the speed available or you waste the power available

Step 6: Determine the peak torque at speed including motor inertia.

- calculate RMS torque to evaluate motor heating issues (necessary for servo systems)
- give $50-100 \%$ torque margin (only use lower margins if measurable mechanics exist)
- check for $10-20 \%$ velocity margin

Step 7: Optimize the system.

- Check the load-to-motor inertia ratio, and compare to the machine's stiffness to the performance desired. A ratio higher than $10: 1$ is an indicator of potential instability problems with non-stiff systems. (Note: It is not the cause of the problem.)
- Check the need for a power dump circuit (high inertia ratios or vertical load)
- It may be necessary to adjust mechanics, add reduction, and start over. Remember, iteration is crucial to successful design!

MOTION PROFILE FORMULAS

for triangular profiles:

$$
V=\frac{2 X}{t_{m}}=\frac{2 x_{a}}{t_{a}}
$$

for trapezoidal profiles:

$$
t_{a}=t_{m}-\frac{X}{V}
$$

Where: $V=$ maximum velocity $X=$ total move distance
$t_{m}=\quad$ total move time
$x_{a}=$ acceleration distance
$t_{a}=$ acceleration time
Note: V is used here rather that ω, as these formulas work with either linear or rotary units.

GENERAL TORQUE \& POWER FORMULAS

$$
T_{\text {peak }}=T_{a} \pm T_{f} \pm T_{g} \pm T_{t h}
$$

Torque Equations:

$$
T_{r m s}=\sqrt{\frac{T_{1}^{2} t_{1}+T_{2}^{2} t_{2}+T_{3}^{2} t_{3}+T_{4}^{2} t_{4}}{t_{1}+t_{2}+t_{3}+t_{4}}}
$$

Where: $T_{a}=$ Motor torque required to accelerate the inertial load
$T_{f}=\quad$ Motor torque required to overcome the frictional forces
$T_{g}=\quad$ Motor torque required to overcome the gravitational forces load
$T_{t h}=\quad$ Motor torque required to overcome any additional thrust forces
$T_{1}=\quad$ Torque to accelerate the load from zero speed to max speed $\left(T_{f}+T_{a}\right)$
$T_{2}=\quad$ Torque to keep the motor moving once it reaches max speed $\left(T_{a}=0\right)$
$T_{3}=\quad$ Torque required to decelerate from max speed to a stop $\left(T_{a}-T_{f}\right)$
$T_{4}=\quad$ Torque required while motor is sitting still at zero speed
$t_{1}=\quad$ time spent accelerating the load
$t_{2}=$ time spent while motor is turning at constant speed
$t_{3}=\quad$ time spent decelerating the load
$t_{4}=\quad$ time spent while motor is at rest
Torque Unit Conversions:

$$
N=\frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~s}^{2}} \quad \therefore \quad \frac{\mathrm{~kg} \cdot \mathrm{~cm}^{2}}{\mathrm{~s}^{2}}\left(\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right)^{2}=N \cdot m
$$

Power Unit Conversions:

Watts $=2 \pi(N \cdot m)(r p s)=\frac{2 \pi(N \cdot m)(r p m)}{60}=\frac{(o z \cdot i n)(r p s)}{22.52}=\frac{(\mathrm{in} \cdot l \mathrm{lb})(\mathrm{rpm})}{84.45}=\frac{(f t \cdot l b)(r p m)}{7.038}=\frac{(\mathrm{ft} \cdot \mathrm{lb})(\mathrm{rps})}{0.1173}$
$1 h p=746 \mathrm{~W}$

DIRECT DRIVE (ROTARY) FORMULAS

Inertia (Step 3):

Solid Cylinder

Where ρ, the density is known, use

$$
J_{\text {load }}=\frac{\pi L \rho R^{4}}{2}
$$

Where mass and radius are known use

$$
\begin{aligned}
J_{\text {load }}= & \frac{m R^{2}}{2} \\
& m=\pi L \rho R^{2}
\end{aligned}
$$

Hollow Cylinder

Where ρ, the density, is known use

$$
J_{\text {load }}=\frac{\pi L \rho}{2}\left(R_{2}^{4}-R_{1}^{4}\right)
$$

Where m , the mass, is known use

$$
\begin{aligned}
J_{\text {load }}= & \frac{m}{2}\left(R_{1}^{2}+R_{2}^{2}\right) \\
& m=\pi L \rho\left(R_{2}^{2}-R_{1}^{2}\right)
\end{aligned}
$$

Torque (Step 2, 4-7)

$$
\begin{gathered}
T_{a}=\left(J_{\text {load }}+J_{c p}+J_{m}\right)\left(\frac{\omega_{m}}{t_{a}}\right) \\
T_{f}=(F)(R)
\end{gathered}
$$

Where:

$$
\begin{array}{lll}
J_{c p} & = & \text { inertia of the coupler }\left(\mathrm{g} \cdot \mathrm{~cm}^{2}\right) \\
J_{m} & =\text { inertia of the motor's rotor }\left(\mathrm{g} \cdot \mathrm{~cm}^{2}\right) \\
t_{a} & = & \text { acceleration time }(\mathrm{s}) \\
\omega_{m} & = & \text { maximum motor velocity reached }(\mathrm{rad} / \mathrm{s}) \\
F & = & \text { frictional force }(\mathrm{N}) \\
R & = & \text { radius at which the frictional force acts }(\mathrm{cm})
\end{array}
$$

Note 1: When using Imperial units, specifically inertia in convenient units of oz $\cdot \mathrm{in}^{2}$, the acceleration torque formula must be modified to correct the units. The units of oz $\cdot \mathrm{in}^{2}$ for inertia are not proper inertial units, yet they are quite convenient to calculate inertia based on real world data. To use the acceleration torque formula with inertia in $\mathrm{oz} \cdot \mathrm{in}^{2}$, divide by the gravitational constant $g\left(1 / 386 \mathrm{in} / \mathrm{s}^{2}\right)$, which converts oz $\cdot \mathrm{in}^{2}$ to proper units of oz $\cdot \mathrm{in} \cdot \mathrm{s}^{2}$ as follows:

$$
T_{a}=\frac{1}{386 \frac{\mathrm{in}}{\mathrm{~s}^{2}}}\left(J_{\text {load }}+J_{c p}+J_{m}\right)\left(\frac{\omega_{m}}{t_{a}}\right)
$$

Note 2: Though the correct symbol for mass moment of inertia is " Γ ", typically in mechatronics we (incorrectly) use the symbol " J " for inertia, as " Γ " is also used for electrical current.

DIRECT DRIVE WITH REDUCTION

Gear Drive Inertia Formulas:

$$
\begin{aligned}
J_{\text {load }} & =\frac{m_{\text {load }} R_{\text {load }}^{2}}{2 N^{2}} \\
& \text { or } \\
J_{\text {load }}= & \frac{\pi L_{\text {load }} \rho_{\text {load }} R_{\text {load }}^{4}}{2 N^{2}} \\
J_{\text {gear } 1}= & \frac{m_{\text {gear } 1} R_{\text {gear } 1}^{2}}{2 N^{2}} \\
J_{\text {gear } 2}= & \frac{m_{\text {gear } 2} R_{\text {gear } 2}^{2}}{2}
\end{aligned}
$$

Where:
$J_{x} \quad=$ inertia "as seen by the motor"
$m \quad=$ mass
$R \quad=$ radius
$N \quad=$ reduction ratio ($\mathrm{R} 1 / \mathrm{R} 2$)
$L \quad=$ length
$\rho \quad=$ density

Note: Most gearhead manufacturers provide the reflected inertia of the reducer in their user guide. This will help eliminate the need to calculate the individual gear inertias.

$$
\begin{gathered}
T_{a}=\left(\frac{J_{\text {load }}}{e}+J_{r}+J_{m}\right)\left(\frac{\omega_{\mathrm{m}} N}{t_{a}}\right) \\
T_{f}=\frac{(F)(R)}{e N}
\end{gathered}
$$

Where:

$$
\begin{array}{ll}
e & =\text { efficiency of transmission (reduction) } \\
N & \text { = reduction ratio } \\
J_{r} & \text { = effective inertia of reducer, gear box, belts and pulleys, or gears } \\
J_{m} & \text { = inertia of the motor's rotor } \\
\omega_{m} & \text { = maximum motor velocity reached } \\
t_{a} & \text { = acceleration time } \\
F & \text { = frictional force } \\
R & \text { radius at which the frictional force acts }
\end{array}
$$

EXAMPLE \#1-Fluted-Bit Cutting Machine

Parameters for Axis 4:

- Move distance
- Move time
0.2 rev
- Maximum velocity allowed
0.15 s
- Length of chuck

20 rps

- Diameter of steel chuck
4.0 cm
- Length of bit
3.0 cm
- Diameter of steel bit

14 cm
0.8 cm

- Torque required during cutting $\quad 0.050 \mathrm{~N} \cdot \mathrm{~m}$

Step 1:

$$
V=\frac{2 X}{t_{m}}=\frac{(2)(0.2)}{0.15}=2.67 \mathrm{rps}
$$

(OK, since not above "knee" on most stepper curves)

Step 2:

$$
T_{a}=\left(J_{b i t}+J_{\text {chuck }}+J_{\text {motor }}\right)\left(\frac{\omega_{m}}{t_{a}}\right)
$$

Step 3: $\quad J_{b i t}=\frac{\pi}{2}(14 \mathrm{~cm})\left(7.75 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}\right)\left(\frac{0.8 \mathrm{~cm}}{2}\right)^{4}=4.36 \mathrm{~g} \cdot \mathrm{~cm}^{2}$

$$
J_{\text {chuck }}=\frac{\pi}{2}(4 \mathrm{~cm})\left(7.75 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}\right)\left(\frac{3.0 \mathrm{~cm}}{2}\right)^{4}=246.5 \mathrm{~g} \cdot \mathrm{~cm}^{2}
$$

Step 4:
$T_{a}=\left(4.36 \mathrm{~g} \cdot \mathrm{~cm}^{2}+246.5 \mathrm{~g} \cdot \mathrm{~cm}^{2}\right)(2 \pi)\left(\frac{2.67 \mathrm{rps}}{0.15 \mathrm{~s} / 2}\right)=56,112 \mathrm{~g} \cdot \frac{\mathrm{~cm}^{2}}{\mathrm{~s}^{2}}=0.0056 \mathrm{~kg} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}=0.0056 \mathrm{~N} \cdot \mathrm{~m}$

$$
T_{f}=0.050 \mathrm{~N} \cdot \mathrm{~m}
$$

$$
\begin{gathered}
T_{\text {peak }}=T_{a}+T_{f}=0.0056+0.050 \mathrm{~N} \cdot \mathrm{~m}=0.0556 \mathrm{~N} \cdot \mathrm{~m} @ 2.67 \mathrm{rps} \\
P=2 \pi(0.0556 \mathrm{~N} \cdot \mathrm{~m})(2.67 \mathrm{rps})=0.93 \mathrm{~W} \\
J_{\text {load }}=4.36+246.5=250.86 \mathrm{~g} \cdot \mathrm{~cm}^{2}
\end{gathered}
$$

Step 5: Try Nema 23 half-stack step motor, $\quad J_{m}=0.070 \mathrm{~kg} \cdot \mathrm{~cm}^{2}=70 \mathrm{~g} \cdot \mathrm{~cm}^{2}$

Step 6: $\quad T_{a}=(4.36+246.5+70)(2 \pi)\left(\frac{2.67}{0.15 / 2}\right)=71,770 \mathrm{~g} \cdot \frac{\mathrm{~cm}^{2}}{\mathrm{~s}^{2}}=0.0072 \mathrm{~N} \cdot \mathrm{~m}$

$$
T_{\text {peak }}=T_{a}+T_{f}=0.0072+0.050 \mathrm{~N} \cdot \mathrm{~m}=0.0572 \mathrm{~N} \cdot \mathrm{~m} @ 2.67 \mathrm{rps}
$$

Step 7:

$$
\begin{gathered}
\text { Inertia Ratio }=\frac{J_{l}}{J_{m}}=\frac{250.86 \mathrm{~g} \cdot \mathrm{~cm}^{2}}{70 \mathrm{~g} \cdot \mathrm{~cm}^{2}}=3.6 \text { (fine) } \\
\text { Torque Margin (@speed) }=\frac{T_{\text {available }}-T_{\text {peak }}}{T_{\text {peak }}}=\frac{0.26 \mathrm{~N} \cdot \mathrm{~m}-0.0572 \mathrm{~N} \cdot \mathrm{~m}}{0.00572 \mathrm{~N} \cdot \mathrm{~m}}=355 \% \text { (fine) }
\end{gathered}
$$

PROBLEM \#1-Grinding Of Bicycle Rim Braking Surface

- Outside diameter of steel bicycle rim
- Move distance
- Move time
- Inertia of rim-holding fixture
- Width of rim
- Inside diameter of rim
- Friction torque during grinding
- Dwell time between moves
- Velocity is not limited in any way
- This is not the final grinding move, but is the worst case move, making repeated passes over the weld.

Answer: approximately $20 \mathrm{~N} \cdot \mathrm{~m} @ 0.56 \mathrm{rps}$

LEADSCREW FORMULAS

Inertia (Step 3)

$$
J_{\text {load }}=\frac{m}{(2 \pi p)^{2}} \quad J_{\text {screw }}=\frac{\pi L \rho R^{4}}{2}
$$

Where: $\quad m=$ mass (kg)
$L=$ length (cm)
$R=$ radius (cm)
$\rho=$ density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$
$p=$ pitch of screw (revs/unit length) (inverse of lead)
The formula for $J_{\text {load }}$ converts linear mass into the rotational inertia as reflected to the motor shaft by the lead screw.

Torque (Step 2, 4-7)

$$
T_{a}=\left(\frac{J_{\text {load }}}{e}+J_{\text {screw }}+J_{c p}+J_{m}\right)\left(\frac{\omega_{\mathrm{m}}}{t_{a}}\right)
$$

$$
T_{f}=T_{b r}+\frac{F}{2 \pi p e}
$$

$$
T_{g}=\frac{m g}{2 \pi p e}
$$

$$
F=\mu_{d} m g
$$

Where: $\quad J_{\text {screw }}=\quad$ inertia of lead screw or ball screw $\left(\mathrm{kg} \cdot \mathrm{cm}^{2}\right)$
$T_{b r} \quad=\quad$ breakaway torque of nut on screw $(\mathrm{N} \cdot \mathrm{m})$
$F \quad=\quad$ force or thrust required
$p \quad=\quad$ pitch of screw (revs/unit length)
$e \quad=\quad$ efficiency of nut and screw
$\omega_{m} \quad=\quad$ maximum motor speed (rev/s). (watch critical speed of screw)
$g \quad=\quad$ acceleration due to gravity
$J_{c p} \quad=\quad$ inertia of the coupling $\left(\mathrm{kg} \cdot \mathrm{cm}^{2}\right)$
$J_{m} \quad=\quad$ inertia of the motor's rotor $\left(\mathrm{kg} \cdot \mathrm{cm}^{2}\right)$
$t_{a}=\quad$ acceleration time (s)
$T_{g} \quad=\quad$ torque required to overcome gravity (vertical)
$\mu_{d} \quad=\quad$ coefficient of dynamic friction

EXAMPLE \#3 - "Smart" Battery Inspection

Parameters for Axis 1:

- Length of steel leadscrew

36 in

- Pitch of leadscrew

5

- Efficiency of leadscrew
0.65
- Radius of leadscrew
0.5 in
- Move distance
1.5 in
- Move time
0.5 s
- Maximum allowed velocity
$5 \mathrm{in} / \mathrm{s}$
- Weight of load

50 lbs .

- Coefficient of friction
0.01
- Breakaway Torque
$25 \mathrm{oz} \cdot$ in

Step 1:

$$
\begin{aligned}
& V=\frac{(2)(15 \mathrm{in})}{0.5 \mathrm{sec}}=6 \mathrm{in} / \mathrm{sec}, \text { too high } \\
& \mathrm{t}_{\mathrm{a}}=\mathrm{t}_{\mathrm{m}}-\frac{X}{V}=0.5-\frac{1.5}{5}=0.2 \mathrm{sec}
\end{aligned}
$$

$$
V=5 \frac{\mathrm{in}}{\mathrm{sec}} \times 5 \frac{\mathrm{rev}}{\mathrm{in}}=25 \frac{\mathrm{rev}}{\mathrm{sec}}
$$

Step 2:

$$
T_{a}=\frac{1}{386}\left(\frac{\mathrm{~J}_{\text {load }}}{e}+\mathrm{J}_{\text {leadscrew }}+\mathrm{J}_{\text {motor }}+\mathrm{J}_{\mathrm{cp}}\right) \frac{2 \pi \mathrm{~V}}{\mathrm{t}_{\mathrm{a}}}
$$

Step 3:

$$
J_{\text {load }}=\frac{W}{(2 \pi p)^{2}}=\frac{5 Q 16)}{(2 \pi 5)^{2}}=0.810 z \cdot \mathrm{in}^{2}
$$

$$
\mathrm{J}_{\text {leadscrew }}=\frac{\pi L \rho \mathrm{R}^{4}}{2}=\frac{\pi}{2}(36)(4.48)(.5)^{4}=15.8 \mathrm{oz} \cdot \mathrm{in}^{2}
$$

$$
\mathrm{J}_{\mathrm{cp}}=0
$$

$$
\mathrm{T}_{\mathrm{a}}=\frac{1}{386}\left(\frac{.81}{.65}+15.8\right) \frac{2 \pi(25)}{.2}=34.69 \mathrm{oz} \cdot \text { in @ } 25 \mathrm{rps}
$$

Step 4:

$$
\begin{gathered}
\mathrm{T}_{\mathrm{f}}=\mathrm{T}_{\mathrm{br}}+\frac{\mathrm{F}}{2 \pi \mathrm{pe}}=25+\frac{0.01(50)(16)}{2 \pi 5(.65)}=25.39 \mathrm{oz} \cdot \text { in } \\
\mathrm{T}_{\text {peak }}=34.69+25.39=60.08 \mathrm{oz} \cdot \mathrm{in} \\
\mathrm{hp}=\frac{(60.08) 25}{16,800}=0.0894\left(746 \frac{\mathrm{watts}}{\mathrm{hp}}\right)=667 \mathrm{watts}
\end{gathered}
$$

Step 5: Choose motor with about 0.2 hp

Step 6: $\quad \mathrm{T}_{\mathrm{a}}=\frac{1}{386}\left(\frac{.81}{.65}+15.8+6.70\right) \frac{2 \pi(25)}{.2}=48.3 \mathrm{oz} \cdot$ in

$$
\begin{gathered}
\mathrm{T}_{\text {peak }}=48.3+2539=73.7 \mathrm{oz} \cdot \text { in } @ 25 \mathrm{rps} \\
\frac{J_{\mathrm{J}}}{J_{m}}=\frac{16.61}{6.7}=2.48, \mathrm{O} . \mathrm{K} .
\end{gathered}
$$

Step 7:

Pick S83-93

TANGENTIAL DRIVES FORMULAS

Tangential Drives

Inertia Formulas:

$J_{\text {load }}=m_{l} R_{d p}^{2}$
$J_{d p}=J_{f p}=\frac{m_{p} R_{p}^{2}}{2}=\frac{\pi L_{p} \rho R_{p}^{4}}{2}$
$J_{b}=m_{b} R_{d p}^{2}$

Where:

$$
\begin{array}{ll}
J_{d p} & =\text { inertia of the driving pulley } \\
J_{f p} & =\text { inertia of the follow pulley } \\
J_{b} & =\text { inertia of the belt } \\
R_{d p} & =\text { radius of the driving pulley } \\
m_{l} & =\text { mass of the load } \\
m_{p} & =\text { mass of the pulley } \\
m_{b} & =\text { mass of the belt }
\end{array}
$$

Belt Drive Torque Formulas:

Direct Drive:

$$
\begin{aligned}
& T_{a}=\left(\frac{J_{\text {load }}+J_{\text {belt }}+J_{\text {mechanics }}}{e_{b}}+J_{d p}+J_{m}\right)\left(\frac{\omega_{m}}{t_{a}}\right) \\
& T_{f}=F R_{d p}
\end{aligned}
$$

With a gearhead:

$$
\begin{aligned}
& T_{a}=\left(\frac{J_{\text {load }}+J_{\text {belt }}+J_{\text {mechanics }}}{e_{b} e_{g h} N_{g h}^{2}}+\frac{J_{d p}}{e_{g h} N_{g h}^{2}}+J_{g h}+J_{m}\right)\left(\frac{\omega_{m} N_{g h}}{t_{a}}\right) \\
& T_{f}=\frac{F R_{d p}}{e_{g h} N_{g h}}
\end{aligned}
$$

Where:
$t_{a} \quad=$ acceleration time
$e_{b} \quad=$ efficiency of belt over pulleys
$e_{g h} \quad=$ efficiency of gearhead
$N_{g h} \quad=$ reduction ratio of gearhead
$J_{\text {mechanics }}=$ inertia of other moving masses
$R_{d p} \quad=$ radius of driving pulley
$J_{g h} \quad=$ effective inertia of reducer
$\omega_{m} \quad=$ maximum motor speed
$J_{m} \quad=$ inertia of the motor's rotor
$F \quad=$ force or thrust or friction forces at the drive pulley

Rack \& Pinion Torque Formulas:

Note: In the following formulas, the rack is stationary and the motor moves with the load. If the rack moves and the motor is stationary, then use the belt and pulley formulas, where the rack acts essentially like the belt.
Direct Drive: $\quad T_{a}=\left(\frac{J_{\text {load }}+J_{m}+J_{p}}{e_{g}}\right)\left(\frac{\omega_{m}}{t_{a}}\right)$

$$
T_{f}=\frac{F R_{p}}{e_{g}}
$$

With gearhead on motor: $\quad T_{a}=\left(\frac{J_{\text {load }}+J_{p}}{e_{g} N^{2} e_{g h}}+\frac{J_{g h}+J_{m}}{e_{g}}\right)\left(\frac{\omega_{m} N}{t_{a}}\right)$

$$
T_{f}=\frac{F R_{p}}{e_{g} N^{2} e_{g h}}
$$

Where:

$$
\begin{array}{ll}
J_{l o a d} & =\text { inertia of moving load } \\
e_{g} & =\text { efficiency of transmission between rack and pinion } \\
J_{p} & =\text { inertia of pinion gear and shafts and couplers and outboard bearings (if any) } \\
R_{p} & =\text { effective radius of pinion gear } \\
F & =\text { force, thrust or friction } \\
J_{m} & =\text { inertia of the motor's rotor } \\
\omega_{m} & =\text { maximum motor speed } \\
t_{a} & =\text { acceleration time } \\
J_{g h} & =\text { effective inertia of reducer } \\
e_{g h} & =\text { efficiency of reducer } \\
N & =\text { reduction ratio }
\end{array}
$$

APPENDIX A
 STANDARD END FIXTURING METHODS

The method of end fixturing has a direct effect on critical speed, column load bearing capacity, and system stiffness. Four common methods are shown below.

Fixed-Free
One end held in a duplex (preloaded) bearing, the other end is free

Simple-Simple
Both ends held in a single bearing.

Fixed-Simple
One end held in a duplex (preloaded) bearing, one end held in a single bearing.

Fixed-Fixed
Both ends held in duplex (preloaded) bearings.

DENSITIES OF COMMON MATERIALS

Material		$\mathrm{oz} / \mathrm{in}^{3}$
$\mathrm{gm} / \mathrm{cm}^{3}$		
Aluminum Alloys	1.54	2.8
Brass, Bronze	4.80	8.6
Copper	5.15	8.9
Plastics	0.64	1.1
Steel (carbon,alloys,stainless)	4.48	7.8
Hard Wood	0.46	0.80

KINEMATIC EQUATIONS
(straight-line motion w/ constant acceleration)

Equation	Contains			
	x	v_{x}	a_{x}	t
$v_{x}=v_{x_{0}}+a_{x} t$		\checkmark	\checkmark	\checkmark
$x=x_{0}+\frac{1}{2}\left(v_{x_{0}}+v_{x}\right) t$	\checkmark	\checkmark		\checkmark
$x=x_{0}+v_{x_{0}} t+\frac{1}{2} a_{x} t^{2}$	\checkmark		\checkmark	\checkmark
$v_{x}{ }^{2}=v_{x_{0}}^{2}+2 a_{x}\left(x-x_{0}\right)$	\checkmark	\checkmark	\checkmark	

COEFFICIENTS OF FRICTION

Materials (dry contact unless noted)	μ_{s}	μ_{d}
Steel on Steel	0.74	0.58
Steel on Steel (lubricated)	0.23	0.15
Aluminum on Steel	0.61	0.45
Copper on Steel		0.22
Brass on Steel		0.19
Teflon on Steel	0.04	0.04
Round rails w/ball bearings	0.002	0.002
Linear guides - radius groove	0.003	0.002
Linear guides - gothic arch (depends	0.008	0.004
on load, pre-load \& type)	to .05	to .02

BALL SCREW FORMULAS

Critical Speed

$$
N_{c}=\left(\frac{S \cdot d \times 10^{6}}{f_{s} \cdot L^{2}}\right)
$$

$N_{c} \quad=$ critical speed (rpm)
$d \quad=$ root diameter of screw (cm)
$L \quad=$ distance between bearings (cm)
$f_{s} \quad=$ Safety factor (recommend 1.25)
$S \quad=$ end support conditions factor
$=4.22 \quad$ fixed - free
$=18.85$ fixed - simple
$=27.31 \quad$ fixed - fixed
Note: The 'S' term carries units rev• cm /min. This equation is based on the natural frequency of the rod, and acquires its time component from that derivation.

Column Load

$$
\begin{aligned}
F_{c l}= & \left(\frac{14.03 \times 10^{6} \cdot S \cdot d^{4}}{L^{2}}\right) \\
F_{c l}= & \text { maximum load (lb) } \\
S= & \text { end fixity factor } \\
& =.250 \text { one end fixed one free } \\
& =1.0 \text { both ends supported } \\
& \text { (simple) } \\
= & 2.0 \text { one fixed one simple } \\
= & 4.0 \text { both fixed } \\
d= & \text { root diameter of screw } \\
L= & \text { distance between ball nut and } \\
& \text { load-carrying bearing }
\end{aligned}
$$

Note: The 'S' term carries hidden units that make the formula simpler and easier to use.

Backdriving Torque

(mainly used to determine holding brake torque)

$$
T_{b}=\frac{F \times l \times e}{2 \pi}
$$

$T_{b}=$ torque required to backdrive
$F=$ axial load
$l=$ lead of screw
$e=$ efficiency of screw

Life Expectancy

For Other then Rated (Dynamic) Load

Life $=\frac{10^{6} \text { inches }}{(\text { operating load } / \text { dynamic load })^{3}}$
$=\frac{10^{6} \text { inches }}{\left(\mathrm{F}_{\mathrm{m}} / \text { dynamic load }\right)^{3}}$
For Equivalent Load

$$
F_{m}=\sqrt[3]{\left(Y_{1}\left(F_{1}\right)^{3}+\ldots Y_{n}\left(F_{n}\right)^{3}\right)}
$$

$F_{m}=$ equivalent load
$F_{n}=$ a particular increment of load $Y_{n}=$ the portion of a cycle (sub cycles) of a particular increment of load expressed as a decimal, i.e. the sum of the sub cycles must equal one. Example if L_{1} is applied for 20% of the cycle, L_{2} is applied for 30% of the cycle and L3 is applied for 50% of the cycle, then the associated Y values are $\quad \mathrm{Y}_{1}=.2, \mathrm{Y}_{2}=$ $.3, Y_{3}=.5$.
To convert from A to B, multiply by entry in Table. *Don't confuse mass-inertia with weight-inertia: mass inertia $=\underline{\text { wt.inertia }}$

Torque Conversion Table

A	N -m	$\mathrm{N}-\mathrm{cm}$					0z-in	ft-lb	in-lb
N -m		10^{2}					1.416-10 ${ }^{2}$	0.737	8.850
$\mathrm{N}-\mathrm{cm}$	10^{-2}						1.416	7.375-10-3	8.850-10-2
oz-in	7.061-10-3	0.706						$5.208-10^{-3}$	6.250-10-2
ft-lb	1.355	1.355-10 ${ }^{2}$					192		12
in-lb	0.112	11.298					16	8.333-10-2	

